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Abstract—A hole of a simple connected graph 𝐺 is a chordless cycle 𝐶 , where  ∈ ℕ,  ≥ 4, in the graph 𝐺. The girth of a simple 

connected graph 𝐺 is the smallest cycle in 𝐺, if any such cycle exists. It can be observed that all such smallest cycles are necessarily 

chordless. We call the cycle 𝐶  in a given graph 𝐺 a primitive hole of that graph. We introduce the notion of the primitive hole number of a 

graph as the number of primitive holes present in that graph. In this paper, we determine the primitive hole number of certain standard 

graphs. Also, we determine the primitive hole number of the underlying graph of a Jaco graph, 𝐽
   

 
( ), where  ∈ 𝑁,  ≥ 4 recursively in 

terms of the underlying Jaco graph 𝐽
 
( ), with prime Jaconian vertex 𝑣 . The notion of primitive degree of the vertices of a graph is 

introduced and the primitive degree of the vertices of certain graphs is also determined in this paper.   

Index Terms—Jaco graph, primitive hole, primitive hole number, girth of a graph, primitive degree of a vertex.paper..   
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1 INTRODUCTION                                                                     

OR general notations and concepts in graph theory, we 
refer to [3], [7] and [11] and for digraph theory, we further 
refer to [5] and [8]. All graphs mentioned in this paper are 

simple, connected and finite graphs, unless mentioned other-
wise.  
A hole of a simple connected graph 𝐺 is a chordless cycle 𝐶  , 
where  ∈ 𝑁,  ≥ 4, in 𝐺. The girth of a simple connected 
graph 𝐺, denoted by 𝑔(𝐺), is the order of the smallest cycle in 
𝐺. It is to be noted that such smallest cycles are necessarily 
chordless. In this paper, contrary to the usual conventions, we 
propose that the girth of an acyclic graph is 0, which enables 
us to explore evolutionary hole growth like, a hole 𝐶  may grow 
over time units 𝑡  in 𝑋 ⊆ ℕ over a positive integer valued func-
tion 𝑥(𝑡) = 𝑗 to attain 𝑗 additional cyclic vertices at 𝑡. Hence  
𝑔(lim   ( 𝐶   ( ))) = ∞. It also implies that for simple con-
nected graphs 𝐺 , 𝐺 , 𝐺 , … , 𝐺 , 𝑔(𝑝   

 𝐺 ) = ∑ 𝑔 
   (𝐺 ) and 

allows quite naturally that, 𝑔(⋃ 𝐺 
 
   ) = ∑ 𝑔 

   (𝐺 ) = ∞. These 
conventions reconcile the inherent conflict between the defini-
tions of a girth and hole. 

 

2   PRIMITIVE HOLE NUMBER OF GRAPHS 

 
In this section, we introduce the notion of primitive holes and 
the primitive hole number of a given graph as follows. 
  
Definition 2.1. A primitive hole of a graph 𝐺 is a triangle 𝐶  in 
it. The primitive hole number of a simple connected graph 𝐺, 
denoted ℎ(𝐺), is the number of primitive holes in 𝐺.  
If a simple connected graph 𝐺 has no primitive hole, then we 

say that ℎ(𝐺) = 0. Hence, it follows that for simple connected 
graphs 𝐺 , 𝐺 , 𝐺 , … , 𝐺 , ℎ(⋃ 𝐺 

 
   ) = ∑ ℎ 

   (𝐺 ).   
 
In view of the above definitions, we can establish the follow-
ing theorem.  
 
Proposition 1.2.  The number of primitive holes in a complete graph 
𝐾  is ( 

 
).  

 
Proof. A primitive hole of any given graph 𝐺 is a triangle 𝐾 . 
Hence, ℎ(𝐾 ) is the the number of distinct triangles in 𝐾 . It 
can be noticed that every distinct triplet of vertices in 𝐾  forms 
a triangle in 𝐾 . Therefore, the number of primitive holes in 𝐾  
is equal to the number of ways in which three vertices can be 
chosen from the given set of   vertices. Hence ℎ(𝐾 ) = ( 

 
).    

 
The following result establishes a relation between the primi-
tive hole numbers of a given graph and its subgraphs.  
 
Proposition 1.3.  For any subgraph 𝐻 of a given graph 𝐺, ℎ(𝐻) ≤
ℎ(𝐺).  
 
Proof. Let 𝐺 be a given graph and 𝐻 be its non-trivial sub-
graph. Then, we have either 𝑉(𝐻) ⊆ 𝑉(𝐺) and/or 𝐸(𝐻) ⊆ 𝐸(𝐺). 
Then we have the following cases.  
Case-1: First assume that 𝑉(𝐻) is a non-trivial subset of 𝑉(𝐺). 
Then, there exists some vertex, say 𝑣, in 𝑉(𝐺) but not in 𝑉(𝐻). 
If 𝑣 is a pendant vertex of 𝐺, then it is not in any triangle of 𝐺 
and hence the number of triangles in 𝐺 − 𝑣 and 𝐺 are the 
same. If 𝑣 is not a pendant vertex of 𝐺, then 𝑣 must be adjacent 
to at least two vertices in 𝐺. Let 𝑢 and 𝑤 be two vertices that 
are adjacent to 𝑣 in 𝐺. If 𝑢 and 𝑣 are adjacent vertices in 𝐺, then 
the vertices 𝑢, 𝑣, 𝑤 form a triangle in 𝐺 and this triangle will be 
missing in 𝐺 − 𝑣. If 𝑢 and 𝑣 are non-adjacent in 𝐺, then also 𝐺 
and 𝐺 − 𝑣 contain same number of primitive holes.  
Case-2: If 𝐻 is a spanning subgraph of 𝐺, then 𝑉(𝐻) = 𝑉(𝐺). In 
this case, 𝐸(𝐻) is a non-trivial subset of 𝐸(𝐺). Then, there ex-
ists some edge in 𝐺 that is not in 𝐻. Let 𝑒 be an edge in 𝐺 that 
is not in 𝐻. If this edge is in a triangle of 𝐺, then as explained 
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in Case-1, that triangle will be missing in 𝐻. Otherwise, the 
number of triangles in 𝐺 and 𝐺 − 𝑒 are the same.  
 
Invoking all the above cases, we have ℎ(𝐻) ≤ ℎ(𝐺).                 
 
Invoking the above results, we have the following theorem.  
 
Theorem 1.4. For any simple, connected graph 𝐺 on   vertices, 
0 ≤ ℎ(𝐺) ≤ ( 

 
).  

 
Proof.  The result follows as an immediate consequence of 
Proposition 2 and Proposition 3.                                                                  
 
For a given graph 𝐺, either if 𝐺 is an acyclic graph or a 
𝑔(𝐺) ≥ 4, then ℎ(𝐺) = 0. Then, we need only consider the 
graphs whose girth is  . If 𝑔(𝐺) =  , then the graph 𝐺 contains 
at least one primitive hole. The following lemma explains a 
relation between the size of a graph 𝐺 and the number of 
primitive holes in 𝐺.  
 
Lemma 1.5. For any simple connected graph 𝐺 we have that, 
ℎ(𝐺) ≤ |𝐸(𝐺)|.  
 
Proof. It is to be noted that any two distinct triangles in 𝐺 can 
have at most one edge in common. Hence, if 𝑡 is the number of 
triangles in 𝐺, then the minimum number of edges in 𝐺 must 
be  𝑡   . Since 𝑡 <  𝑡    for all positive integers 𝑡, we have 
ℎ(𝐺) < |𝐸(𝐺)|.         
 
The line graph (see *6+) of a given graph 𝐺, denoted by 𝐿(𝐺), 
has the edges of 𝐺 as vertices with two vertices in 𝐿(𝐺) are 
adjacent if, as the edges of 𝐺, they are adjacent in 𝐺. The fol-
lowing theorem establishes a relation between the primitive 
hole numbers of a graph and its line graph.  
 
Theorem 1.6.  For a given graph 𝐺 and its line graph 𝐿(𝐺), 
ℎ(𝐺) ≤ ℎ(𝐿(𝐺)).  
 
Proof. Note that 𝐿(𝐺) contains a triangle if three or more edges 
are incident to a vertex in 𝐺. In this context, we need to verify 
the following possible cases.  
 
Case-1: First assume that Δ(𝐺) ≤  . Then, 𝐺 is either a path or 
a cycle. If 𝐺 ≅ 𝑃 , a path on   vertices, then 𝐿(𝐺) = 𝑃   . In this 
case, ℎ(𝐺) = ℎ(𝐿(𝐺)) = 0. If 𝐺 ≅ 𝐶 , then 𝐿(𝐺) ≅ 𝐺 = 𝐶 . If 
 =  , then both 𝐺 and  𝐿(𝐺) themselves are primitive holes 
and for  ≥ 4, 𝐺 and 𝐿(𝐺) do not contain primitive holes. In all 
these cases, ℎ(𝐺) = ℎ(𝐿(𝐺)). 
  
Case-2: If 𝐺 is a tree with Δ(𝐺) ≥  , then one vertex, say 𝑣, in 𝐺 
with 𝑑(𝑣) ≥  . Then, the vertices of 𝐿(𝐺) corresponding to the 
edges of 𝐺 incident on the vertex 𝑉 𝐺 are mutually adjacent in 
𝐿(𝐺) and hence it corresponds to a complete subgraph 𝐾 ( ) of 
the graph 𝐿(𝐺). More over, every vertex with degree greater 
than or equal to   contributes to the number of primitive holes 
in 𝐿(𝐺). Let 𝑉  be the subset of 𝑉(𝐺) containing the vertices of 
degree greater than or equal to  . Clearly, 𝑉  is non-empty. 
Then, for a vertex 𝑣 ∈ 𝑉 , we have 𝑑(𝑣) =  ≥   and hence 

*𝑣+ ∪ 𝑁(𝑣) ≅ 𝐾 ,  and the corresponding induced subgraph of 
𝐿(𝐺) is 𝐾 . Therefore, by Theorem 2, this subgraph contains 
( 
 
) triangles. Hence, the total number of such triangles in 𝐿(𝐺) 

(that do not correspond to triangles in 𝐺) is ∑ ( ( )
 

) ∈  . There-
fore, in this case, the primitive holes in 𝐿(𝐺) is given by  
ℎ(𝐿(𝐺)) = ℎ(𝐺)  ∑ ( ( )

 
) ∈  . Therefore, ℎ(𝐿(𝐺)) ≥ ℎ(𝐺). 

  
Invoking the above cases, we have  ℎ(𝐺) ≤ ℎ(𝐿(𝐺)).     
 
The total graph 𝑇(𝐺) (see *1+) of a graph 𝐺 is that graph whose 
vertex set is 𝑉(𝐺) ∪ 𝐸(𝐺) and in which two vertices are adja-
cent if and only if they are adjacent or incident in 𝐺.  
 
The following lemma provides a relation between the primi-
tive hole numbers of a graph, its line graph and total graph.  
 
Lemma 1. 7. For any  graph 𝐺, ℎ(𝐺) ≤ ℎ(𝐿(𝐺)) ≤ ℎ(𝑇(𝐺)).  
 
Proof. By Theorem 6, we have ℎ(𝐺) ≤ ℎ(𝐿(𝐺)). The graph 𝐺 
and its line graph 𝐿(𝐺) are subgraphs of 𝑇(𝐺). Therefore, By 
Proposition 3, we have ℎ(𝐿(𝐺)) ≤ ℎ(𝑇(𝐺)). Combining these 
two inequalities, we have  ℎ(𝐺) ≤ ℎ(𝐿(𝐺)) ≤ ℎ(𝑇(𝐺)).    
 
The following theorem establishes an improved lower bound 
for the primitive hole number of the line graph 𝑇(𝐺) of a given 
graph 𝐺.  
 
Theorem 1.8.  For any given graph 𝐺 and its total graph 𝑇(𝐺), 
|𝐸(𝐺)| ≤ ℎ(𝑇(𝐺)).  
 
Proof. Let 𝑢, 𝑣 be two adjacent vertices in 𝐺. Then, the vertices 
of 𝑇(𝐺) corresponding to the elements 𝑢, 𝑣 and 𝑢𝑣 in 𝐺 form a 
triangle in 𝑇(𝐺). That is, every edge in 𝐺 corresponds to a tri-
angle in 𝑇(𝐺). Then, we have to consider the following cases.  
 
Case-1: Let Δ(𝐺) ≤  . If Δ(𝐺) = 0, then 𝐺 ≅ 𝑃 , the trivial 
graph. Then, 𝑇(𝐺) is also a trivial graph and hence |𝐸(𝐺)| =
ℎ(𝑇(𝐺)) = 0. If Δ(𝐺) =  , then 𝐺 ≅ 𝐾  and hence 𝑇(𝐺) = 𝐶 . In 
this case |𝐸(𝐺)| = ℎ(𝑇(𝐺)) =  . 
  
Next, assume that Δ(𝐺) =  . Then, 𝐺 ≅ 𝑃  or 𝐺 ≅ 𝐶 , where 
 >  . Let 𝑒 = 𝑣 𝑣  and 𝑒 = 𝑣 𝑣  be two adjacent edges in 𝐺. 
The vertices in 𝑇(𝐺) corresponding to the elements 𝑣 , 𝑣  and 
the edge 𝑒  (and 𝑣 , 𝑣  and the edge𝑒 ) of 𝐺 form a triangle in 
𝑇(𝐺). Since 𝑒  and 𝑒  are adjacent in 𝐺, the vertices in 𝑇(𝐺) 
corresponding to the elements 𝑒 , 𝑒  and the vertex 𝑣  in 𝐺 also 
form a triangle in 𝐺. Now, for every vertex 𝑣 , that is adjacent 
to any one these vertices additionally form two triangles in 
𝑇(𝐺). Hence, if 𝐺 ≅ 𝑃 ,   >  , then ℎ(𝐺) =   −  > |𝐸(𝐺)| =
 −   and if 𝐺 ≅ 𝐶 , then ℎ(𝐺) =   > |𝐸(𝐺)| =  .  
 
Case-2: Let Δ(𝐺) ≥  . Then, each edge of 𝐺 corresponds to a 
triangle in 𝐺 and adjacency of two edges also forms a triangle 
in 𝑇(𝐺). Moreover, every 𝐾 ,  and every 𝐶  in 𝐺 also form tri-
angles in 𝑇(𝐺). Since at least one vertex of 𝐺 has a degree 
greater than or equal to  , then ℎ(𝑇(𝐺)) > |𝐸(𝐺)|. Hence, in 
this case, we have ℎ(𝐺) < ℎ(𝑇(𝐺)). 
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Combining the above two cases, we have ℎ(𝐺) ≤ ℎ(𝑇(𝐺)).   
 
In view of the above theorem, we can establish the following 
result.  
 
Corollary 1.9. If 𝐺 is a graph on   or more vertices, then |𝐸(𝐺)| <
ℎ(𝑇(𝐺)).  
 
In view of the above theorem, we have the following results.  
 
Theorem 1.10.  For a given graph 𝐺, ℎ(𝑇(𝐺)) = |𝐸(𝐺)| if and only 
if 𝐺 has no internal vertices.  
 
Proof. Assume that 𝐺 has no internal vertex. Then, Δ(𝐺) <   
and either 𝐺 ≅ 𝐾  or 𝐺 ≅ 𝐾 . Hence, by 2.8, ℎ(𝑇(𝐺)) = |𝐸(𝐺)|.  
 
Assume the converse. That is, for a given graph 𝐺, we have 
ℎ(𝑇(𝐺)) = |𝐸(𝐺)|. If possible, let 𝐺 has some internal vertex, 
say 𝑣. Then, 𝑣 is adjacent to at least two vertices 𝑢 and 𝑤 in 𝐺. 
Let 𝑒 = 𝑢𝑣 and 𝑒 = 𝑣𝑤. Label the vertices of 𝑇(𝐺) by the same 
label of the corresponding element of 𝐺. Then, we can find 
three triangles in 𝑇(𝐺), formed by the vertex triplets *𝑢, 𝑣, 𝑒 +, 
𝑣, 𝑤, 𝑒  and 𝑒 , 𝑒 , 𝑣. Hence, for any pair of adjacent edges in 𝐺, 
there exists three triangles in 𝐺 incident on their common (in-
ternal) vertex. Therefore, |𝐸(𝐺)| < ℎ(𝑇(𝐺)), a contradiction to 
the hypothesis. Therefore, 𝐺 cannot have internal vertices.      
 
The above theorem leads us to the following result. 
  
Corollary 1.11. For a given graph 𝐺, ℎ(𝑇(𝐺)) > |𝐸(𝐺)| if and only 
if 𝐺 has some internal vertices.  
 
Proof. The statement of the theorem is the contrapositive of  
Theorem 10.                     

3. THE PRIMITIVE HOLE NUMBER OF THE UNDERLYING 

GRAPH OF A JACO GRAPH 

 
Let us now recall the definition of Jaco graphs, finite and infi-
nite, as follows.  
 
Definition 3.1. *9+ The infinite Jaco graph, denoted by 𝐽 ( ), is a 
directed graph with vertex set 𝑉 and arc set 𝐴 such that 
𝑉(𝐽 ( )) = *𝑣 | ∈ ℕ+, 𝐸(𝐽 ( )) ⊆ *(𝑣 , 𝑣 ):  , 𝑗 ∈ ℕ,  < 𝑗+ and 
(𝑣 , 𝑣 ) ∈ 𝐴(𝐽 ( )) if and only if   − 𝑑 (𝑣 ) ≥ 𝑗. A finite Jaco 
graph, denoted by 𝐽 ( ), is a finite subgraph of 𝐽 ( ), where   
is a finite positive integer.  
 
Definition 3.2. The vertices attaining degree Δ(𝐽 ( )) is called 
the Jaconian vertices of the Jaco Graph (𝐽 ( ). The set of Jaconi-
an vertices of (𝐽 ( ) is denoted by 𝕁 ( ).  
 
The Jaco graph (𝐽 ( )), with the vertex set 𝑉(𝐽 ( )) = *𝑣 :  ∈
ℕ+, has the fundamental properties as given below.  

1. if 𝑣  is the head of an arc (𝑣 , 𝑣 ), then  < 𝑗,  

2. if  ∈ ℕ is the smallest integer such that 𝑣  is a tail vertex 

of an arc (𝑣 , 𝑣 ) in 𝐽 ( ), then for all  < 𝑙 < 𝑗, the vertex 

𝑣  is the tail of an arc to 𝑣 ,  

3. the degree of vertex   is 𝑑(𝑣 ) =  .  

 
The family of finite directed graphs are those limited to  ∈ ℕ 
vertices by lobbing off all vertices (and hence the arcs incident 
on these vertices) 𝑣 ,  𝑡 >  . Hence, trivially we have 𝑑(𝑣 ) ≤   
for  ∈ ℕ.  
 
We denote the underlying graph by 𝐽 

 ( ). We now provide a 
recursive formula of the number of primitive holes, ℎ(𝐽   

 ( )) 
in terms of ℎ(𝐽 

 ( )),  ≥ 4.  
 
If 𝑣  is the prime Jaconian vertex of a Jaco Graph 𝐽 ( ), the 
complete subgraph on vertices 𝑣   , 𝑣   , 𝑣   , … , 𝑣  is called 
the Hope subgraph of a Jaco Graph and denoted by ℍ ( ).  
 
In view of the above definitions and concept, we can deter-
mine the primitive hole number of the underlying graph of a 
Jaco graph as in the following theorem.  
 
Theorem 3.3. Let 𝐽 

 ( ) be the underlying graph of a finite Jaco 
Graph 𝐽 ( ) with Jaconian vertex 𝑣 , where   is a positive integer 
greater than or equal to 4. Then, ℎ(𝐽   

 ( )) = ℎ(𝐽 
 ( ))  

∑ (
(   )  
    −  ) − 𝑗.  

 
Proof. Consider the underlying Jaco graph, 𝐽 

 ( ),  ∈ ℕ,  ≥ 4 
with prime Jaconian vertex 𝑣 . Now consider 𝐽   

 ( ). From the 
definition of a Jaco graph, the extension from 𝐽 

 ( ) to 𝐽   
 ( ) 

is obtained by adding the vertex 𝑣    and the edges 
𝑣   𝑣   , 𝑣   𝑣   , … , 𝑣 𝑣    to 𝐽 

 ( ).  
 
We know that the Hope graph ℍ(𝐽 

 ( )) (see *9+) is the com-
plete graph on vertices 𝑣   , 𝑣   , 𝑣   , … , 𝑣 . So it follows that 
the triplets of vertices induce the additional primitive holes.  
 

*𝑣   , 𝑣   , 𝑣   +, *𝑣   , 𝑣   , 𝑣   +, … , *𝑣   , 𝑣   , 𝑣 +⏟                                  
(   )  ,    

, 
 
*𝑣   , 𝑣   , 𝑣   +, *𝑣   , 𝑣   , 𝑣   +, … , *𝑣   , 𝑣   , 𝑣 +⏟                                  

(   )  ,    

, 
 
*𝑣   , 𝑣   , 𝑣   +, *𝑣   , 𝑣   , 𝑣   +, … , *𝑣   , 𝑣   , 𝑣 +⏟                                  

(   )  ,    

, 
           ⋮ 
           ⋮ 
*𝑣  (     ), 𝑣   , 𝑣  (   )+⏟                

(   ) (     )  ,   

 
 
Therefore, ℎ(𝐽   

 ( )) = ℎ(𝐽 
 ( ))  ∑ (

(   )  
    −  ) − 𝑗.   

4. PRIMITIVE DEGREE OF GRAPHS 

 
In this section, we introduce the notion of the primitive degree 
of a vertex of a given graph 𝐺 as follows.  
 
Definition 4.1. The primitive degree of a vertex 𝑣 of a given 
graph 𝐺 is the number of primitive holes to which the vertex 𝑣 
is a common vertex. The primitive degree of a vertex 𝑣 of 𝐺 is 
denoted by 𝑑 

 
(𝑣).  

 
It follows easily that the primitive degree of each vertex of the 
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complete graph 𝐾  is  . We can also note that the primitive 
degree of any vertex of a path 𝑃  and primitive degree of any 
vertex of a cycle 𝐶 ;   ≥   is 0. For the complete graphs 
𝐾 ;   ≥ 4, we have the following result. 
  
Theorem 4.2.  The primitive degree of a vertex 𝑣 of a complete 
graph 𝐾 ;   ≥   is ∑     

   .  
 
Proof. Let 𝑣 be an arbitrary vertex of a complete graph 𝐾 . 
Then, any two pair of edges of 𝐾  form a triangle in 𝐾  togeth-
er with an edge that is not incident on 𝑣. That is, the number 
of triangles incident on the vertex 𝑣 is the number of distinct 
pairs of edges that are incident on 𝑣. That is, 𝑑  

 
(𝑣) = (   

 
) =

 

 
( −  )( −  ) = ∑     

   .     
 
Now, we also give an alternate proof for Theorem 2 using 
mathematical induction as follows.  
 
Proof 2. Consider the complete graph 𝐾  first. Here, in this 
case, 𝑑  

 
(𝑣) =  . Assume the result holds for 𝐾 . Hence, we 

have 𝑑 𝐾 (𝑣) = ∑     
   . Label the vertices of 𝐾  as 

𝑣 , 𝑣 , 𝑣 , … , 𝑣 .  
Now, consider the complete graph 𝐾   . In the extension from 
𝐾  to 𝐾   , the vertex 𝑣    with the edges 
𝑣   𝑣 , 𝑣   𝑣 , 𝑣   𝑣 , … , 𝑣   𝑣  were added. Hence, the follow-
ing combinations of vertex sets induce triangles in 𝐾   .  
 

*𝑣   , 𝑣 , 𝑣 +, *𝑣   , 𝑣 , 𝑣 +, … , *𝑣   , 𝑣 , 𝑣 +⏟                          
   

(  ),    

, 
 
*𝑣   , 𝑣 , 𝑣 +, *𝑣   , 𝑣 , 𝑣 +, … , *𝑣   , 𝑣 , 𝑣 +⏟                            

   
(  )  ,    

, 
 
*𝑣   , 𝑣 , 𝑣 +, *𝑣   , 𝑣 , 𝑣 +, …… , *𝑣   , 𝑣 , 𝑣 +⏟                            

   (  )  ,    

, 
             ⋮ 
             ⋮ 
*𝑣   , 𝑣   , 𝑣 + 

 
induce the primitive holes having 𝑣    as a common vertex, 
exhaustively. The total of such sets which induce triangles in  
is given by (𝑡 −  )  (𝑡 −  )  (𝑡 −  )  ⋯  = ((𝑡   ) −
 )  ∑     

   = ∑  
(   )  
   .  

 
Hence, the result follows by induction.      
 
A question that arouses much interest in this context is about 
the primitive degree of the vertices of a line graph of a given 
graph. The primitive degree of the vertices of line graphs is 
determined in following theorem. 
  
Theorem 4.3. The primitive degree of a vertex 𝑣 in the line graph of 
a graph 𝐺 is 𝑑 ( ))

 
= 𝛬  ( (  )  

 
)  ( (  )  

 
), where 𝛬 is the num-

ber of triangles containing the edge 𝑒 = 𝑣 𝑣  of 𝐺 corresponding to 
the vertex 𝑣 in 𝐿(𝐺).  
 
Proof. A triangle in 𝐿(𝐺) corresponds to either a triangle in 𝐺 
or a 𝐾 ,  in 𝐺. The number of triangles incident on a vertex 𝑣 of 
𝐿(𝐺) is the number triangles or the number of 𝐾 ,  which con-
tain the edge 𝑒 of 𝐺, corresponding to the vertex 𝑣 in 𝐿(𝐺). The 
number of 𝐾 ,  in 𝐺 containing the edge 𝑒 = 𝑣 𝑣  is ( (  )  

 
)  

( (  )  

 
). Therefore, the number of triangles incident on the 

vertex 𝑣 is ( (  )  
 

)  ( (  )  

 
)  𝛬, where 𝛬 is the number of 

triangles in 𝐺 containing the edge 𝑒 in 𝐺. This completes the 
proof.                          
          
The following result establishes recurrence relation on the 
primitive degree of the vertices of complete graphs.  
 
Proposition 4.4. For the graph 𝐾 ;   ≥ 4, the primitive degree 
𝑑  

 
(𝑣) = 𝑑    

 
(𝑢)  ( −  ).  

 
Proof. We know that the primitive degree of every vertex of a 
complete graph is the same. Now assume that we have the 
primitive degree of a vertex, say 𝑣  in 𝐾   , where  ≤  ≤  −
 . Now, extend 𝐾    to 𝐾  by adding a vertex, say 𝑣  to 𝐾    
and joining every vertex of 𝐾    to the new vertex 𝑣 . Then, 
the vertex triplets *𝑣 , 𝑣 , 𝑣 +,  ≠ 𝑗,   ≤  ≠ 𝑗 ≤  −   form new 
triangles in 𝐾  that are not in 𝐾   . Hence, exactly ( −  ) ad-
ditional primitive holes incident on the vertex 𝑣  in 𝐾  than the 
number of primitive holes in 𝐾   .       
 
Invoking the concepts mentioned above, the primitive degree 
of a Jaco graph is determined in the following result. 
  
Theorem 4.5. For  ≥ 5, the primitive hole number of the Jaco 
graph 𝐽 ( ) is ℎ(𝐽 ( )) = ∑( 𝑑  ( )

 (𝑣 ) −  ), for all 𝑑  ( )
 (𝑣 ) ≥  .  

 
Proof. We prove this theorem bu mathematical induction. 
Consider 𝐽 

 ( ). It has one primitive hole induced by the verti-
ces *𝑣 , 𝑣 , 𝑣 +. Only the vertex 𝑣  has 𝑑  ( )

 (𝑣 ) =  ≥  . Since 
∑ (   ( )

 (  )  
 −  ) =  , the results holds for 𝐽 

 ( ).  
 
Assume the result holds for 𝐽 

 ( ) having Jaconian vertex 𝑣 . 
Hence, we have ℎ(𝐽 

 ( )) = ∑( 𝑑  ( )
 (𝑣 ) −  ),  ∀𝑑  ( )

 (𝑣 ) ≥  . 
Now, consider the graph 𝐽   

 ( ). We note that ℎ(𝐽   
 ( )) =

ℎ(𝐽 
 ( ))  𝑑    

 ( )
 

(𝑣   ). Consider the number of primitive 
holes having both 𝑣   , 𝑣    in common. Clearly, the triangles 
induced by 
*𝑣   , 𝑣   , 𝑣   +, *𝑣   , 𝑣   , 𝑣   +, *𝑣   , 𝑣   , 𝑣   +, . . . , *𝑣   , 𝑣   , 𝑣 + 
are exhaustive. The number of primitive holes having vertices 
𝑣   , 𝑣    in common is given by 𝑑  ( )

 (𝑣   ) = 𝑑    ( )
 (𝑣   ) −

 . Since the latter sub-result applies to every vertex 
𝑣   , 𝑣   , 𝑣   , … , 𝑣 , 𝑣   , the result ℎ(𝐽 

 ( )) = ∑( 𝑑  ( )
 (𝑣 ) −

 ),  ∀𝑑  ( )
 (𝑣 ) ≥  , follows by induction.      

 
In the following proposition, the primitive hole number of a 
complete graph 𝐾  is determined recursively from the primi-
tive degree of the vertices of complete graphs order less than 
or equal to  .  
 
Proposition 4.6. For a complete graph 𝐾 ,  ≥ 4, ℎ(𝐾 ) =
∑ 𝑑  

  
   (𝑣), where 𝑣 ∈ 𝑉(𝐾 ).  

 
Proof. Consider a complete graph 𝐾 ,  ≥ 4 and label its verti-
ces as 𝑣 , 𝑣 , 𝑣 , . . . , 𝑣 . By Theorem 2, 𝑑  

 
(𝑣), where 𝑣 ∈

𝑉(𝐾 ) = ∑     
   , for all 𝑣 ∈ 𝑉(𝐾 ). Hence, without loss of gen-

erality, we determine𝑑  

 
(𝑣 ), thereafter 𝑑     

 
(𝑣 ), thereafter 

𝑑   *  ,  +
 

(𝑣 ) and so on until we obtain the triangle on vertices 
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𝑣   , 𝑣   , 𝑣 , which has ℎ(𝐾 ) =  . Clearly, the summation of 
this iterative procedure equals the total number of primitive 
holes, ℎ(𝐾 ). Hence, the result ℎ(𝐾 ) = ∑ 𝑑  

  
   (𝑣), holds.       

 
A natural and relevant question in this context is whether 
there is a relation between the primitive hole number of a 
graph 𝐺 and the primitive degree of its vertices. The following 
theorem gives an answer to this question.  
 
Theorem 4.7. For a simple connected graph 𝐺, we have ℎ(𝐺) =
 

 
∑ 𝑑 

 
 ∈ ( ) (𝑣).  

 
Proof. Consider any simple connected graph 𝐺, ℎ(𝐺) ≥ 0. If 
ℎ(𝐺) = 0, it implies that 𝑑 

 
(𝑣) = 0, ∀𝑣 ∈ 𝑉(𝐺). Hence, the re-

sult holds. If ℎ(𝐺) ≥  , say ℎ(𝐺) = 𝑡, then label the primitive 
holes 𝐾 

 , 𝐾 
 , 𝐾 

 , . . . , 𝐾 
 , respectively. Each primitive hole 

𝐾 
 ,  ≤  ≤ 𝑡 in 𝐺 has the vertices say, 𝑢, 𝑣, 𝑤. In determining 

𝑑 
 
(𝑢), 𝑑 

 
(𝑣) and 𝑑 

 
(𝑤), the primitive hole 𝐾 

  is counted three 
times. Since this triple count applies to all primitive holes the 
result, we have ℎ(𝐺) =

 

 
∑𝑑 

 
(𝑣), ∀𝑣 ∈ 𝑉(𝐺).                

    
Invoking the results on the primitive hole number of complete 
graphs and on the primitive degree of the vertices of those 
complete graph, we have the following theorem. 
  
Theorem 4.8. For the Jaco graph 𝐽 ( ),  ≥ 5 having the Jaconian 
vertex 𝑣 , we have ℎ(𝐽 

 ( )) = (   
 
)  ∑( 𝑑  ( )

 (𝑣 ) −  ), where 
𝑑  ( )

 (𝑣 ) ≥  ; 𝑗 ≤  .  
 
Proof. For the Jaco graph 𝐽 

 ( ),  ≥ 5 having the Jaconian ver-
tex 𝑣 , we apply Theorem 2 over vertices 𝑣 , 𝑣 , 𝑣 , … , 𝑣  fol-
lowed by applying Proposition 2 to the Hope graph ℍ(𝐽 

 ( )).       
 

5. CONCLUSION 

 
We have discussed the primitive hole number of graphs and 
primitive degree of vertices of certain simple connected 
graphs. The study seems to be promising as it can be extended 
to certain standard graph classes and certain graphs that are 
associated with the given graphs. Determining the primitive 
degree of a vertex of the total graph of a graph 𝐺 is an open 
problem. More problems in this area are still open and hence 
there is a wide scope for further studies.  
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